Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation

Author:

Jung Kichul,Bae Deg-HyoORCID,Um Myoung-JinORCID,Kim Siyeon,Jeon Seol,Park DaeryongORCID

Abstract

The present work aimed to examine the feasibility of using artificial neural network (ANN) based models to obtain accurate estimates of nitrate loads in river basins, which is an important parameter for water quality management. Both Single ANN (SANN) and Ensemble ANN (EANN) models were used to obtain the load estimations for five river basins in the Midwest United States. These basins included the Cuyahoga, Raisin, Sandusky, Muskingum, and Vermilion basins in Michigan and Ohio. Further, canonical correlation analysis (CCA) was applied to the ANN models to improve the performance. The k-fold cross-validation method was then utilized to evaluate the proposed models based on two statistical indices, namely, the rRMSE and rBAIS, and the estimates were compared for four different k values (k = 3, 5, 7, and 10). According to the results, the EANN model seemed to produce better load estimations than the SANN model, and the CCA based EANN model tended to produce the best estimates among all of the proposed models in this study. The box plot data for the rRMSE index were also investigated, and the plot results indicated that increasing values of k tended to generate better estimates. Thus, the use of k = 10 is recommended for load estimations since this value was associated with better performances and less biased estimates.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3