A Prototype Design and Sea Trials of an 11,000 m Autonomous and Remotely-Operated Vehicle Dream Chaser

Author:

Jiang Zhe,Lu Bin,Wang Biao,Cui WeichengORCID,Zhang Jinfei,Luo Ruilong,Luo Gaosheng,Zhang Shun,Mao Zhongjun

Abstract

To better study the biology and ecology of hadal trenches for marine scientists, the Hadal Science and Technology Research Center (HAST) of Shanghai Ocean University proposed to construct a movable laboratory that includes a mothership, several full-ocean-depth (FOD) submersibles, and FOD landers to obtain samples in the hadal trenches. Among these vehicles, the project of an FOD autonomous and remotely-operated vehicle (ARV) named “Dream Chaser” was started in July 2018. The ARV could work in both remotely-operated and autonomous-operated modes, and serves large-range underwater observation, on-site sampling, surveying, mapping, etc. This paper proposed a novel three-body design of the FOD ARV. A detailed illustration of the whole system design method is provided. Numerical simulations and experimental tests for various sub-systems and disciplines have been conducted, such as resistance analysis using the computational fluid mechanics method and structural strength analysis for FOD hydrostatic pressure using the finite element method and pressure chamber tests. In addition, components tests and the entire system tests have been performed on land, underwater, and in the pressure chamber in the laboratory of HAST, and the results are discussed. Extensive experiments of two critical components, i.e., the thrusters and ballast-abandoning system, have been conducted and further analyzed in this paper. Finally, the procedures and results of lake trials, South China Sea trials and the first phase of Mariana Trench sea trials of the ARV in 2020 are also introduced. This paper provides a design method for the novel three-body FOD ARV. More importantly, the lessons learned from the FOD pressure test, lake tests, and sea trials, no matter the success or failure, will guide future endeavors and the application of ARV Dream Chaser and underwater vehicles of this kind.

Funder

General Program of Natural Science Foundation of Shanghai Committee of Science and Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference24 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3