Camera-LiDAR Cross-Modality Fusion Water Segmentation for Unmanned Surface Vehicles

Author:

Gao JiantaoORCID,Zhang Jingting,Liu Chang,Li Xiaomao,Peng YanORCID

Abstract

Water segmentation is essential for the autonomous driving system of unmanned surface vehicles (USVs), which provides reliable navigation for making safety decisions. However, existing methods have only used monocular images as input, which often suffer from the changes in illumination and weather. Compared with monocular images, LiDAR point clouds can be collected independently of ambient light and provide sufficient 3D information but lack the color and texture that images own. Thus, in this paper, we propose a novel camera-LiDAR cross-modality fusion water segmentation method, which combines the data characteristics of the 2D image and 3D LiDAR point cloud in water segmentation for the first time. Specifically, the 3D point clouds are first supplemented with 2D color and texture information from the images and then distinguished into water surface points and non-water points by the early 3D cross-modality segmentation module. Subsequently, the 3D segmentation results and features are fed into the late 2D cross-modality segmentation module to perform 2D water segmentation. Finally, the 2D and 3D water segmentation results are fused for the refinement by an uncertainty-aware cross-modality fusion module. We further collect, annotate and present a novel Cross-modality Water Segmentation (CMWS) dataset to validate our proposed method. To the best of our knowledge, this is the first water segmentation dataset for USVs in inland waterways consisting of images and corresponding point clouds. Extensive experiments on the CMWS dataset demonstrate that our proposed method can significantly improve image-only-based methods, achieving improvements in accuracy and MaxF of approximately 2% for all the image-only-based methods.

Funder

National Key Research and Development Program of China

Joint Founds of National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3