Assessing the Effects of Ocean Warming and Acidification on the Seagrass Thalassia hemprichii

Author:

Liu Pi-JenORCID,Chang Hong-Fong,Mayfield Anderson B.ORCID,Lin Hsing-JuhORCID

Abstract

Seagrass beds serve as important carbon sinks, and it is thought that increasing the quantity and quality of such sinks could help to slow the rate of global climate change. Therefore, it will be important to (1) gain a better understanding of seagrass bed metabolism and (2) document how these high-productivity ecosystems are impacted by climate change-associated factors, such as ocean acidification (OA) and ocean warming (OW). A mesocosm-based approach was taken herein in which a tropical, Western Pacific seagrass species Thalassia hemprichii was cultured under either control or OA-simulating conditions; the temperature was gradually increased from 25 to 31 °C for both CO2 enrichment treatments, and it was hypothesized that this species would respond positively to OA and elevated temperature. After 12 weeks of exposure, OA (~1200 ppm) led to (1) increases in underground biomass and root C:N ratios and (2) decreases in root nitrogen content. Rising temperatures (25 to 31 °C) increased the maximum quantum yield of photosystem II (Fv:Fm), productivity, leaf growth rate, decomposition rate, and carbon sequestration, but decreased the rate of shoot density increase and the carbon content of the leaves; this indicates that warming alone does not increase the short-term carbon sink capacity of this seagrass species. Under high CO2 and the highest temperature employed (31 °C), this seagrass demonstrated its highest productivity, Fv:Fm, leaf growth rate, and carbon sequestration. Collectively, then, it appears that high CO2 levels offset the negative effects of high temperature on this seagrass species. Whether this pattern is maintained at temperatures that actually induce marked seagrass stress (likely beginning at 33–34 °C in Southern Taiwan) should be the focus of future research.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3