Dynamic Energy-Efficient Path Planning of Unmanned Surface Vehicle under Time-Varying Current and Wind

Author:

Zhang YifanORCID,Shi Guoyou,Liu Jiao

Abstract

The unmanned surface vehicle (USV) is significantly affected by the ocean environment and weather conditions when navigating. The energy consumption is large, which is not conducive to completing water tasks. This study investigates the global energy-efficient path planning problem for the USV, wherein the goal is to obtain an optimal path under the interference of the ocean environment and control the USV to avoid static obstacles and arrive at its destination. Firstly, this paper extracts the coastline coordinates and water depth data from the S-57 electronic chart, applying the Voronoi diagram to describe spatial object information preliminarily. Secondly, the dynamic, safe water depth model is obtained using the improved Voronoi diagram algorithm after superimposing the interpolated tide with the water depth data. In order to construct the total energy consumption model, the mathematical model of wind and current is introduced into the linear dynamics model of a USV. Additionally, the timing breakpoints are planned. According to the energy consumption model, this paper improves the A* algorithm to replan the path to consider the distance costs and variation of ocean data in each timing breakpoint. Finally, this paper proposes a new path optimization algorithm to reduce the waypoints and smooth the path. Simulations verified the effectiveness of the method. The energy consumption in a favorable situation is less than in a counter situation. The higher the USV velocity, the higher the energy consumption. The proposed dynamic energy-efficient path considers the distance, ensures a shorter range, and improves the endurance of the USV, which is in line with the actual navigation requirement.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3