Sliding and Fretting Wear Behavior of Biomedical Ultrafine-Grained TiNbZrTaFe/Si Alloys in Simulated Physiological Solution

Author:

Li Yuhua1ORCID,Zhang Qian1,He Yuxin1,Zhao Rong1,Chu Jinghui1,Niu Libin1,Qu Juxin2

Affiliation:

1. College of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China

Abstract

This work investigated the wear behavior of ultrafine-grained Ti65Nb23.33Zr5Ta1.67Fe5 (at.%, TNZTF) and Ti65Nb23.33Zr5Ta1.67Si5 (at.%, TNZTS) alloys fabricated by high-energy ball milling and spark plasma sintering. Wear tests were conducted in a simulated physiological solution under both reciprocating sliding and fretting wear conditions with different loads, frequencies, and stroke lengths. The microstructures, mechanical properties, and anti-wear properties of the investigated alloys were characterized. The results showed that the TNZTF and TNZTS alloys had much less wear volume than the commonly used Ti-6Al-4V (TC4) alloy and commercially pure titanium (CP-Ti). The TNZTF and TNZTS alloys exhibited much more smooth wear surfaces and shallower wear scars compared with TC4 and CP-Ti. The investigated alloys exhibited different wear mechanisms under the reciprocating sliding wear conditions, while they were similar under the fretting wear conditions. Compared with TC4 and CP-Ti, the fabricated TNZTF and TNZTS alloys showed a substantially higher wear resistance, owing to their ultrafine-grained microstructure and superior hardness. Additionally, the addition of Nb and Zr further enhanced the wear resistance by forming a protective Nb2O5 and ZrO2 oxide film. This work provides guidance for designing new biomedical titanium alloys with excellent wear resistance.

Funder

China Postdoctoral Science Foundation

Natural Science Basic Research Plan in the Shaanxi Province of China

National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials

Key Research and Development Program of Shaanxi Province

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3