Dynamic Motions of Piled Floating Pontoons Due to Boat Wake and Their Impact on Postural Stability and Safety

Author:

Freeman Elizabeth L.,Splinter Kristen D.ORCID,Cox Ron J.,Flocard Francois

Abstract

Piled floating pontoons are public access structures that provide a link between land and sea. Despite floating pontoons being frequented by the public, there is limited data available to coastal or maritime engineers detailing the dynamic motions (acceleration and rotation) of these structures under wave action and the impact of these motions on public comfort and safety to inform their design. This contribution summarises results from a set of laboratory-scale physical model experiments of two varying beam width piled floating pontoons subjected to boat wake conditions. Observed accelerations and roll angles were dependent on beam-to-wavelength ratio (B/L), with the most adverse motion response observed for B/L ~0.5. Internal mass of the pontoon played a secondary role, with larger mass structures experiencing lower accelerations for similar B/L ratios. Importantly, these new experimental results reveal the complex interaction between the piles and pontoon that result in peak accelerations more than six times the nominated operational safe motion limit of 0.1g. Root mean square (RMS) accelerations were more than three times the nominated comfort limit (0.02g) and angles of rotation more than double what would be perceived as safe (6 degrees) for the boat wake conditions tested. The frequency of acceleration also suggests patrons standing on these platforms are likely to experience discomfort and instability. Laboratory results are compared against a series of field-scale experiments of pontoon motion response and patron feedback. The dynamic motion response of pontoons tested in both field-scale and laboratory experiments compared well.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference46 articles.

1. Niepert, R. Civil War Pontoon Bridges. 2018, pp. 1–8. 2022.

2. Maritime Structures—Part 6: Design of Inshore Moorings and Floating Structures, 2000.

3. Available online: https://maritimemanagement.transport.nsw.gov.au/documents/sydney-harbour-regional-boating-plan.pdf. Regional Boating Plan Sydney Harbour Region, 2022.

4. Zidan, A.R., Rageh, O.S., Sarhan, T.H.E., and El-Sharabasy, M.M. Wave interaction with single and twin pontoons. Proceedings of the Sixteenth International Water Technology Conference, IWTC 1.

5. Floating Pontoon Breakwaters;Williams;Ocean Eng.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3