Finite-Time Extended State Observe Based Fault Tolerant Control for Autonomous Underwater Vehicle with Unknown Thruster Fault

Author:

Liu Xiaofeng,Zhang Mingjun,Liu Xing,Zhao Wende

Abstract

This paper investigates the problem of fault tolerant control (FTC) for autonomous underwater vehicles (AUVs) with multiple thrusters in the presence of current disturbances, thruster faults, and modelling uncertainty. This paper focuses on the problems of reducing the energy consumption caused by the chattering of control signals and improving the tracking accuracy of an AUV operating in deep-sea environments. In view of the problem of large energy consumption in some other methods, a fault tolerant control method for multiple-thruster AUVs based on a finite-time extended state observer (FTESO) is proposed. More specifically, a FTESO based on an integral sliding mode surface is designed to estimate the generalized uncertainty compounded using current disturbances, thruster faults, and modelling uncertainty. The fast finite-time uniformly ultimately bounded stability of the proposed FTESO is analyzed. Then, based on the estimated value of FTESO, an FTC method based on non-singular fast terminal sliding mode surfaces is developed for AUVs. The finite-time convergence of the closed-loop control system is proved theoretically. In this design, two different sliding mode surfaces are used to design FTESO and FTC, in order to avoid the appearance of singularities. Moreover, a parameter adjustment method is designed to improve tracking accuracy. Finally, comparative numerical simulations show that the proposed control scheme is effective at reducing energy consumption and improving tracking accuracy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3