Intelligent Detection Method of Atrial Fibrillation by CEPNCC-BiLSTM Based on Long-Term Photoplethysmography Data

Author:

Wang Zhifeng12,Fan Jinwei12,Dai Yi3ORCID,Zheng Huannan12,Wang Peizhou4,Chen Haichu12,Wu Zetao12

Affiliation:

1. School of Mechatronics Engineering and Automation, Foshan University, Foshan 528000, China

2. Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, Foshan University, Foshan 528000, China

3. School of Education, City University of Macau, Macau 999078, China

4. Cosmetic Dermatology Department, Dermatology Hospital of Southern Medical University, Guangzhou 510091, China

Abstract

Atrial fibrillation (AF) is the most prevalent arrhythmia characterized by intermittent and asymptomatic episodes. However, traditional detection methods often fail to capture the sporadic and intricate nature of AF, resulting in an increased risk of false-positive diagnoses. To address these challenges, this study proposes an intelligent AF detection and diagnosis method that integrates Complementary Ensemble Empirical Mode Decomposition, Power-Normalized Cepstral Coefficients, Bi-directional Long Short-term Memory (CEPNCC-BiLSTM), and photoelectric volumetric pulse wave technology to enhance accuracy in detecting AF. Compared to other approaches, the proposed method demonstrates faster preprocessing efficiency and higher sensitivity in detecting AF while effectively filtering out false alarms from photoplethysmography (PPG) recordings of non-AF patients. Considering the limitations of conventional AF detection evaluation systems that lack a comprehensive assessment of efficiency and accuracy, this study proposes the ET-score evaluation system based on F-measurement, which incorporates both computational speed and accuracy to provide a holistic assessment of overall performance. Evaluated with the ET-score, the CEPNCC-BiLSTM method outperforms EEMD-based improved Power-Normalized Cepstral Coefficients and Bi-directional Long Short-term Memory (EPNCC-BiLSTM), Support Vector Machine (SVM), EPNCC-SVM, and CEPNCC-SVM methods. Notably, this approach achieves an outstanding accuracy rate of up to 99.2% while processing PPG recordings within 5 s, highlighting its potential for long-term AF monitoring.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3