Workflow for Data Analysis in Experimental and Computational Systems Biology: Using Python as ‘Glue’

Author:

Badenhorst MelindaORCID,Barry Christopher J.ORCID,Swanepoel Christiaan J.ORCID,van Staden Charles Theo,Wissing Julian,Rohwer Johann M.ORCID

Abstract

Bottom-up systems biology entails the construction of kinetic models of cellular pathways by collecting kinetic information on the pathway components (e.g., enzymes) and collating this into a kinetic model, based for example on ordinary differential equations. This requires integration and data transfer between a variety of tools, ranging from data acquisition in kinetics experiments, to fitting and parameter estimation, to model construction, evaluation and validation. Here, we present a workflow that uses the Python programming language, specifically the modules from the SciPy stack, to facilitate this task. Starting from raw kinetics data, acquired either from spectrophotometric assays with microtitre plates or from Nuclear Magnetic Resonance (NMR) spectroscopy time-courses, we demonstrate the fitting and construction of a kinetic model using scientific Python tools. The analysis takes place in a Jupyter notebook, which keeps all information related to a particular experiment together in one place and thus serves as an e-labbook, enhancing reproducibility and traceability. The Python programming language serves as an ideal foundation for this framework because it is powerful yet relatively easy to learn for the non-programmer, has a large library of scientific routines and active user community, is open-source and extensible, and many computational systems biology software tools are written in Python or have a Python Application Programming Interface (API). Our workflow thus enables investigators to focus on the scientific problem at hand rather than worrying about data integration between disparate platforms.

Funder

National Research Foundation

Universiteit Stellenbosch

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3