Characterization of Retronasal Airflow Patterns during Intraoral Fluid Discrimination Using a Low-Cost, Open-Source Biosensing Platform

Author:

Cousens Graham A.,Fotis Michelle M.,Bradshaw Christine M.,Ramirez-Alvarado Yida M.,McKittrick Christina R.

Abstract

Nasal airflow plays a critical role in olfactory processes, and both retronasal and orthonasal olfaction involve sensorimotor processes that facilitate the delivery of volatiles to the olfactory epithelium during odor sampling. Although methods are readily available for monitoring nasal airflow characteristics in laboratory and clinical settings, our understanding of odor sampling behavior would be enhanced by the development of inexpensive wearable technologies. Thus, we developed a method of monitoring nasal air pressure using a lightweight, open-source brain–computer interface (BCI) system and used the system to characterize patterns of retronasal airflow in human participants performing an oral fluid discrimination task. Participants exhibited relatively sustained low-rate retronasal airflow during sampling punctuated by higher-rate pulses often associated with deglutition. Although characteristics of post-deglutitive pulses did not differ across fluid conditions, the cumulative duration, probability, and estimated volume of retronasal airflow were greater during discrimination of perceptually similar solutions. These findings demonstrate the utility of a consumer-grade BCI system in assessing human olfactory behavior. They suggest further that sensorimotor processes regulate retronasal airflow to optimize the delivery of volatiles to the olfactory epithelium and that discrimination of perceptually similar oral fluids may be accomplished by varying the duration of optimal airflow rate.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3