Source Apportionment of Air Quality Parameters and Noise Levels in the Industrial Zones of Blantyre City

Author:

Utsale Constance12,Kaonga Chikumbusko1ORCID,Thulu Fabiano1ORCID,Kosamu Ishmael1,Thomson Fred1,Chitete-Mawenda Upile1ORCID,Sakugawa Hiroshi3

Affiliation:

1. Physics and Biochemical Sciences Department, Malawi University of Business and Applied Sciences, Private Bag 303, Chichiri, Blantyre 312225, Malawi

2. Environment Department, Central East African Railways, Stations Road, Blantyre 312229, Malawi

3. Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi, Hiroshima 739-8527, Japan

Abstract

The increase in industrial activities has raised concerns regarding air quality in urban areas within Malawi. To assess the source apportionment of air quality parameters (AQPs) and noise levels, concentrations of AQPs (CO, TSP, PM 2.5, PM10) and noise levels were monitored at 15 sites in Makata, Limbe, Maselema, Chirimba, and Maone during dry and wet seasons, respectively. Active mobile multi-gas monitors and a Dylos DC1100 PRO Laser Particle Counter (2018 model) were used to monitor AQPs, while Integrated Sound Level Meters were used to measure noise levels. Monitoring and analysis were guided by the World Health Organization (WHO) and Malawi Standards (MS). A Positive Matrix Factorization (PMF) model was used to determine the source apportionment of AQPs, and matrix trajectories analysed air mass movement. In the wet season, the average concentration values of CO, TSP, PM10, and PM2.5 were 0.49 ± 0.65 mg/m3, 85.03 ± 62.18 µg/m3, 14.65 ± 8.13 µg/m3, and 11.52 ± 7.19 µg/m3, respectively. Dry season average concentration values increased to 1.31 ± 0.81 mg/m3, 99.86± 30.06 µg/m3, 24.35 ± 9.53 µg/m3, and 18.28 ± 7.14 µg/m3. Noise levels remained below public MS and WHO standards (85 dB). Positive correlations between AQPs and noise levels were observed, strengthening from weak in the dry season to moderately strong in the wet season. PMF analysis identified key factors influencing AQP accumulation, emphasizing the need for periodic sampling to monitor seasonal pollution trends, considering potential impacts on public health and environmental sustainability. Further studies should look at factors affecting the dynamics of PMF in Blantyre City.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3