Fast-Versus Slow-Resorbable Calcium Phosphate Bone Substitute Materials—Texture Analysis after 12 Months of Observation

Author:

Wach TomaszORCID,Kozakiewicz MarcinORCID

Abstract

The development of oral surgery and implantology has led to the need for better and more predictable materials. Various substitute materials are now used for bone regeneration. The replacement of scaffolding material by new bone tissue is the most important condition. This study aimed to evaluate the effects of the resorbability of bone substitute materials during regeneration to the jawbone. The study included 88 patients during the 12-month follow-up. All the patients had undergone oral surgical procedures using two different substitute materials—Cerasorb (high-rate resorbable (β-tricalcium phosphate)) and Endobone (low-rate resorbable (hydroxyapatite)). Texture analysis was performed in intraoral radiographs, in which regions of interest were established for the bone substitute materials and reference bone. Five texture features were calculated, namely the sum average (SumAverg), entropy (Entropy), and three Harr discrete wavelet transform coefficients. This study revealed that all 5 features described the healing process well. Entropy was decreased in both cases with time; however, in Cerasorb cases, the texture feature values were very close to those of the reference bone after 12 months of healing (p < 0.05). The wavelet transform coefficient at scale 6 also showed that longitudinal objects appeared in implantation sites, similar to trabecular bone (p < 0.05) after 12 months of healing. The slow-resorbing material restored the structure of the alveolar crest better in terms of producing large objects similar to the components of a barrel bone image (wavelet coefficients), but required a longer time for reconstruction. The fast-resorbing material showed a texture image with a similar scattering of structures to that of the reference bone (entropy) after 12 months.

Funder

Uniwersytet Medyczny w Lodzi

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3