Hydraulic Conductivity Estimation: Comparison of Empirical Formulas Based on New Laboratory Experiments

Author:

Goodarzi Mohammad Reza12ORCID,Vazirian Majid2ORCID,Niazkar Majid34ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran

2. Department of Civil Engineering, Yazd University, Yazd 8915813135, Iran

3. Euro-Mediterranean Center on Climate Change, Porta dell’Innovazione Building, 2nd Floor Via della Libertà, 12, Marghera, 30175 Venice, Italy

4. Ca’ Foscari University of Venice, Porta dell’Innovazione Building, 2nd Floor Via della Libertà, 12, Marghera, 30175 Venice, Italy

Abstract

Hydraulic conductivity (K) is one of the most important characteristics of soils in terms of groundwater movement and the formation of aquifers. Generally, it indicates the ease of infiltration and penetration of water in the soil. It depends on various factors, including fluid viscosity, pore size, grain size, porosity ratio, mineral grain roughness, and soil saturation level. Each of the empirical formulas used to calculate K includes one or more of the influencing parameters. In this study, pumping tests from an aquifer were performed by using a hydrology apparatus. Laboratory experiments were conducted on six types of soil with different grain sizes, ranging from fine sand to coarse sand, to obtain K. The experimental-based K values were compared with that of empirical formulas. The results demonstrate that Breyer and Hazen (modified) formulas adequately fit the laboratory values. The novelty of the present study is the comparison of the experimental formulas in completely similar conditions of the same sample, such as porosity, viscosity, and grain size, using the pumping test in a laboratory method, and the results show that the Hazen and the Breyer formulas provide the best results. The findings of this work will help in better development of groundwater resources and aquifer studies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3