A machine learning approach for predicting and localizing the failure and damage point in sewer networks due to pipe properties

Author:

Goodarzi Mohammad Reza1ORCID,Vazirian Majid2

Affiliation:

1. a Department of Civil Engineering, Yazd University, Yazd, Iran

2. b Department of Civil Engineering, Water Resources Management Engineering, Yazd University, Yazd, Iran

Abstract

Abstract As a basic infrastructure, sewers play an important role in the innards of every city and town to remove unsanitary water from all kinds of livable and functional spaces. Sewer pipe failures (SPFs) are unwanted and unsafe in many ways, as the disturbance that they cause is undeniable. Sewer pipes meet manholes frequently, unlike water distribution systems, as in sewers, water movement is due to gravity and manholes are needed in every intersection as well as through pipe length. Many studies have been focused on sewer pipe failures and so on, but few investigations have been done to show the effect of manhole proximity on pipe failure. Predicting and localizing the sewer pipe failures is affected by different parameters of sewer pipe properties, such as material, age, slope, and depth of the sewer pipes. This study investigates the applicability of a support vector machine (SVM), a supervised machine learning (ML) algorithm, for the development of a prediction model to predict sewer pipe failures and the effects of manhole proximity. The results show that SVM with an accuracy of 84% can properly approximate the manhole effects on sewer pipe failures.

Publisher

IWA Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3