Unsupervised Segmentation Evaluation Using Area-Weighted Variance and Jeffries-Matusita Distance for Remote Sensing Images

Author:

Wang Yongji,Qi Qingwen,Liu Ying

Abstract

Image segmentation is an important process and a prerequisite for object-based image analysis. Thus, evaluating the performance of segmentation algorithms is essential to identify effective segmentation methods and to optimize the scale. In this paper, we propose an unsupervised evaluation (UE) method using the area-weighted variance (WV) and Jeffries-Matusita (JM) distance to compare two image partitions to evaluate segmentation quality. The two measures were calculated based on the local measure criteria, and the JM distance was improved by considering the contribution of the common border between adjacent segments and the area of each segment in the JM distance formula, which makes the heterogeneity measure more effective and objective. Then the two measures were presented as a curve when changing the scale from 8 to 20, which can reflect the segmentation quality in both over- and under-segmentation. Furthermore, the WV and JM distance measures were combined by using three different strategies. The effectiveness of the combined indicators was illustrated through supervised evaluation (SE) methods to clearly reveal the segmentation quality and capture the trade-off between the two measures. In these experiments, the multiresolution segmentation (MRS) method was adopted for evaluation. The proposed UE method was compared with two existing UE methods to further confirm their capabilities. The visual and quantitative SE results demonstrated that the proposed UE method can improve the segmentation quality.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3