Comparison of Cloud-Mask Algorithms and Machine-Learning Methods Using Sentinel-2 Imagery for Mapping Paddy Rice in Jianghan Plain

Author:

Gao Xinyi12,Chi Hong1ORCID,Huang Jinliang1,Han Yifei12ORCID,Li Yifan12,Ling Feng1ORCID

Affiliation:

1. Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Southern China, one of the traditional rice production bases, has experienced significant declines in the area of rice paddy since the beginning of this century. Monitoring the rice cropping area is becoming an urgent need for food security policy decisions. One of the main challenges for mapping rice in this area is the quantity of cloud-free observations that are vulnerable to frequent cloud cover. Another relevant issue that needs to be addressed is determining how to select the appropriate classifier for mapping paddy rice based on the cloud-masked observations. Therefore, this study was organized to quickly find a strategy for rice mapping by evaluating cloud-mask algorithms and machine-learning methods for Sentinel-2 imagery. Specifically, we compared four GEE-embedded cloud-mask algorithms (QA60, S2cloudless, CloudScore, and CDI (Cloud Displacement Index)) and analyzed the appropriateness of widely accepted machine-learning classifiers (random forest, support vector machine, classification and regression tree, gradient tree boost) for cloud-masked imagery. The S2cloudless algorithm had a clear edge over the other three algorithms based on its overall accuracy in evaluation and visual inspection. The findings showed that the algorithm with a combination of S2cloudless and random forest showed the best performance when comparing mapping results with field survey data, referenced rice maps, and statistical yearbooks. In general, the research highlighted the potential of using Sentinel-2 imagery to map paddy rice with multiple combinations of cloud-mask algorithms and machine-learning methods in a cloud-prone area, which has the potential to broaden our rice mapping strategies.

Funder

National Natural Science Foundation of China

State Key Laboratory of Remote Sensing Science

Hubei Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3