Abstract
Building trust and transparency in healthcare can be achieved using eXplainable Artificial Intelligence (XAI), as it facilitates the decision-making process for healthcare professionals. Knowledge graphs can be used in XAI for explainability by structuring information, extracting features and relations, and performing reasoning. This paper highlights the role of knowledge graphs in XAI models in healthcare, considering a state-of-the-art review. Based on our review, knowledge graphs have been used for explainability to detect healthcare misinformation, adverse drug reactions, drug-drug interactions and to reduce the knowledge gap between healthcare experts and AI-based models. We also discuss how to leverage knowledge graphs in pre-model, in-model, and post-model XAI models in healthcare to make them more explainable.
Funder
Natural Sciences and Engineering Research Council
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献