Abstract
Background
Interpretability and intuitive visualization facilitate medical knowledge generation through big data. In addition, robustness to high-dimensional and missing data is a requirement for statistical approaches in the medical domain. A method tailored to the needs of physicians must meet all the abovementioned criteria.
Objective
This study aims to develop an accessible tool for visual data exploration without the need for programming knowledge, adjusting complex parameterizations, or handling missing data. We sought to use statistical analysis using the setting of disease and control cohorts familiar to clinical researchers. We aimed to guide the user by identifying and highlighting data patterns associated with disease and reveal relations between attributes within the data set.
Methods
We introduce the attribute association graph, a novel graph structure designed for visual data exploration using robust statistical metrics. The nodes capture frequencies of participant attributes in disease and control cohorts as well as deviations between groups. The edges represent conditional relations between attributes. The graph is visualized using the Neo4j (Neo4j, Inc) data platform and can be interactively explored without the need for technical knowledge. Nodes with high deviations between cohorts and edges of noticeable conditional relationship are highlighted to guide the user during the exploration. The graph is accompanied by a dashboard visualizing variable distributions. For evaluation, we applied the graph and dashboard to the Hamburg City Health Study data set, a large cohort study conducted in the city of Hamburg, Germany. All data structures can be accessed freely by researchers, physicians, and patients. In addition, we developed a user test conducted with physicians incorporating the System Usability Scale, individual questions, and user tasks.
Results
We evaluated the attribute association graph and dashboard through an exemplary data analysis of participants with a general cardiovascular disease in the Hamburg City Health Study data set. All results extracted from the graph structure and dashboard are in accordance with findings from the literature, except for unusually low cholesterol levels in participants with cardiovascular disease, which could be induced by medication. In addition, 95% CIs of Pearson correlation coefficients were calculated for all associations identified during the data analysis, confirming the results. In addition, a user test with 10 physicians assessing the usability of the proposed methods was conducted. A System Usability Scale score of 70.5% and average successful task completion of 81.4% were reported.
Conclusions
The proposed attribute association graph and dashboard enable intuitive visual data exploration. They are robust to high-dimensional as well as missing data and require no parameterization. The usability for clinicians was confirmed via a user test, and the validity of the statistical results was confirmed by associations known from literature and standard statistical inference.