In Silico SAR Studies of HIV-1 Inhibitors

Author:

Hdoufane Ismail,Bjij Imane,Soliman Mahmoud,Tadjer AliaORCID,Villemin Didier,Bogdanov Jane,Cherqaoui Driss

Abstract

Quantitative Structure Activity Relationships (QSAR or SAR) have helped scientists to establish mathematical relationships between molecular structures and their biological activities. In the present article, SAR studies have been carried out on 89 tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepine (TIBO) derivatives using different classifiers, such as support vector machines, artificial neural networks, random forests, and decision trees. The goal is to propose classification models that will be able to classify TIBO compounds into two groups: high and low inhibitors of HIV-1 reverse transcriptase. Each molecular structure was encoded by 10 descriptors. To check the validity of the established models, all of them were subjected to various validation tests: internal validation, Y-randomization, and external validation. The established classification models have been successful. The correct classification rates reached 100% and 90% in the learning and test sets, respectively. Finally, molecular docking analysis was carried out to understand the interactions between reverse transcriptase enzyme and the TIBO compounds studied. Hydrophobic and hydrogen bond interactions led to the identification of active binding sites. The established models could help scientists to predict the inhibition activity of untested compounds or of novel molecules prior to their synthesis. Therefore, they could reduce the trial and error process in the design of human immunodeficiency virus (HIV) inhibitors.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3