pH Effect on Ligand Binding to an Enzyme Active Site

Author:

Singh Kushal,Muttathukattil Aswathy N.,Singh Prashant Chandra,Reddy Govardhan

Abstract

AbstractUnderstanding the mechanism of ligands binding to their protein targets and the influence of various factors governing the binding thermodynamics is essential for rational drug design. The solution pH is one of the critical factors that can influence ligand binding to a protein cavity, especially in enzymes whose function is sensitive to the pH. Using computer simulations, we studied the pH effect on the binding of a guanidinium ion (Gdm+) to the active site of hen-egg white lysozyme (HEWL). HEWL serves as a model system for enzymes with two acidic residues in the active site and ligands with Gdm+ moieties, which can bind to the active sites of such enzymes and are present in several approved drugs treating various disorders. The computed free energy surface (FES) shows that Gdm+ binds to the HEWL active site using two dominant binding pathways populating multiple intermediates. We show that the residues close to the active site that can anchor the ligand could play a critical role in ligand binding. Using a Markov state model, we quantified the lifetimes and kinetic pathways connecting the different states in the FES. The protonation and deprotonation of the acidic residues in the active site in response to the pH change strongly influence the Gdm+ binding. There is a sharp jump in the ligand-binding rate constant when the pH approaches the largest pKa of the acidic residue present in the active site. The simulations reveal that, at most, three Gdm+ can bind at the active site, with the Gdm+ bound in the cavity of the active site acting as a scaffold for the other two Gdm+ ions binding. This result implies the possibility of designing single large molecules containing multiple Gdm+ moieties that can have high binding affinities to inhibit the function of enzymes with two acidic residues in their active site.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3