A Competitive Memory Paradigm for Multimodal Optimization Driven by Clustering and Chaos

Author:

Gálvez JorgeORCID,Cuevas ErikORCID,Gopal Dhal Krishna

Abstract

Evolutionary Computation Methods (ECMs) are proposed as stochastic search methods to solve complex optimization problems where classical optimization methods are not suitable. Most of the proposed ECMs aim to find the global optimum for a given function. However, from a practical point of view, in engineering, finding the global optimum may not always be useful, since it may represent solutions that are not physically, mechanically or even structurally realizable. Commonly, the evolutionary operators of ECMs are not designed to efficiently register multiple optima by executing them a single run. Under such circumstances, there is a need to incorporate certain mechanisms to allow ECMs to maintain and register multiple optima at each generation executed in a single run. On the other hand, the concept of dominance found in animal behavior indicates the level of social interaction among two animals in terms of aggressiveness. Such aggressiveness keeps two or more individuals as distant as possible from one another, where the most dominant individual prevails as the other withdraws. In this paper, the concept of dominance is computationally abstracted in terms of a data structure called “competitive memory” to incorporate multimodal capabilities into the evolutionary operators of the recently proposed Cluster-Chaotic-Optimization (CCO). Under CCO, the competitive memory is implemented as a memory mechanism to efficiently register and maintain all possible optimal values within a single execution of the algorithm. The performance of the proposed method is numerically compared against several multimodal schemes over a set of benchmark functions. The experimental study suggests that the proposed approach outperforms its competitors in terms of robustness, quality, and precision.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference52 articles.

1. Engineering Optimization: Theory and Practice: Fourth Edition;Rao,2009

2. Engineering Optimization: An Introduction with Metaheuristic Applications;Yang,2010

3. Combining Agent-Based Approaches and Classical Optimization Techniques;Persson,2005

4. A Comparison of Evolutionary Computation Techniques for IIR Model Identification

5. Lipschitz and Hölder global optimization using space-filling curves

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3