A Comparison of Evolutionary Computation Techniques for IIR Model Identification

Author:

Cuevas Erik12ORCID,Gálvez Jorge1,Hinojosa Salvador1ORCID,Avalos Omar1,Zaldívar Daniel12,Pérez-Cisneros Marco3

Affiliation:

1. Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Avenida Revolución 1500, 44430 Guadalajara, JAL, Mexico

2. Centro Universitario Azteca, Unidad de Investigación, Avenida Juárez 340, 44280 Guadalajara, JAL, Mexico

3. CUTONALA, Avenida Nuevo Periférico 555, Ejido San José Tateposco, 48525 Tonalá, JAL, Mexico

Abstract

System identification is a complex optimization problem which has recently attracted the attention in the field of science and engineering. In particular, the use of infinite impulse response (IIR) models for identification is preferred over their equivalent FIR (finite impulse response) models since the former yield more accurate models of physical plants for real world applications. However, IIR structures tend to produce multimodal error surfaces whose cost functions are significantly difficult to minimize. Evolutionary computation techniques (ECT) are used to estimate the solution to complex optimization problems. They are often designed to meet the requirements of particular problems because no single optimization algorithm can solve all problems competitively. Therefore, when new algorithms are proposed, their relative efficacies must be appropriately evaluated. Several comparisons among ECT have been reported in the literature. Nevertheless, they suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. This study presents the comparison of various evolutionary computation optimization techniques applied to IIR model identification. Results over several models are presented and statistically validated.

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3