Abstract
Waste straw biomass is an abundant renewable bioresource raw material on Earth. Its stubborn wooden cellulose structure limits straw lignocellulose bioconversion into value-added products (e.g., biofuel, chemicals, and agricultural products). Compared to physicochemical and other preprocessing techniques, the steam explosion method, as a kind of hydrothermal method, was considered as a practical, eco-friendly, and cost-effective method to overcome the above-mentioned barriers during straw lignocellulose bioconversion. Steam explosion pretreatment of straw lignocellulose can effectively improve the conversion efficiency of producing biofuels and value-added chemicals and is expected to replace fossil fuels and partially replace traditional chemical fertilizers. Although the principles of steam explosion destruction of lignocellulosic structures for bioconversion to liquid fuels and producing solid biofuel were well known, applications of steam explosion in productions of value-added chemicals, organic fertilizers, biogas, etc. were less identified. Therefore, this review provides insights into advanced methods of utilizing steam explosion for straw biomass conversion as well as their corresponding processes and mechanisms. Finally, the current limitations and prospects of straw biomass conversion with steam explosion technology were elucidated.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献