Evaluating the Diagnostic Accuracy of an AI-Driven Platform for Assessing Endodontic Treatment Outcomes Using Panoramic Radiographs: A Preliminary Study

Author:

Kazimierczak Wojciech123ORCID,Wajer Róża2ORCID,Wajer Adrian4,Kalka Karol3,Kazimierczak Natalia3ORCID,Serafin Zbigniew12ORCID

Affiliation:

1. Department of Radiology and Diagnostic Imaging, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland

2. Department of Radiology and Diagnostic Imaging, University Hospital No. 1 in Bydgoszcz, Marii Skłodowskiej Curie 9, 85-094 Bydgoszcz, Poland

3. Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland

4. Dental Primus, Poznańska 18, 88-100 Inowrocław, Poland

Abstract

Background/Objectives: The purpose of this preliminary study was to evaluate the diagnostic performance of an AI-driven platform, Diagnocat (Diagnocat Ltd., San Francisco, CA, USA), for assessing endodontic treatment outcomes using panoramic radiographs (PANs). Materials and Methods: The study included 55 PAN images of 55 patients (15 males and 40 females, aged 12–70) who underwent imaging at a private dental center. All images were acquired using a Hyperion X9 PRO digital cephalometer and were evaluated using Diagnocat, a cloud-based AI platform. The AI system assessed the following endodontic treatment features: filling probability, obturation adequacy, density, overfilling, voids in filling, and short filling. Two human observers independently evaluated the images, and their consensus served as the reference standard. The diagnostic accuracy metrics were calculated. Results: The AI system demonstrated high accuracy (90.72%) and a strong F1 score (95.12%) in detecting the probability of endodontic filling. However, the system showed variable performance in other categories, with lower accuracy metrics and unacceptable F1 scores for short filling and voids in filling assessments (8.33% and 14.29%, respectively). The accuracy for detecting adequate obturation and density was 55.81% and 62.79%, respectively. Conclusions: The AI-based system showed very high accuracy in identifying endodontically treated teeth but exhibited variable diagnostic accuracy for other qualitative features of endodontic treatment.

Publisher

MDPI AG

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3