Spray Flame Synthesis and Multiscale Characterization of Carbon Black–Silica Hetero-Aggregates

Author:

Buchheiser Simon1ORCID,Kistner Ferdinand1,Rhein Frank1ORCID,Nirschl Hermann1

Affiliation:

1. Process Machines, Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Abstract

The increasing demand for lithium-ion batteries requires constant improvements in the areas of production and recycling to reduce their environmental impact. In this context, this work presents a method for structuring carbon black aggregates by adding colloidal silica via a spray flame with the goal of opening up more choices for polymeric binders. The main focus of this research lies in the multiscale characterization of the aggregate properties via small-angle X-ray scattering, analytical disc centrifugation and electron microscopy. The results show successful formation of sinter-bridges between silica and carbon black leading to an increase in hydrodynamic aggregate diameter from 201 nm to up to 357 nm, with no significant changes in primary particle properties. However, segregation and coalescence of silica particles was identified for higher mass ratios of silica to carbon black, resulting in a reduction in the homogeneity of the hetero-aggregates. This effect was particularly evident for silica particles with larger diameters of 60 nm. Consequently, optimal conditions for hetero-aggregation were identified at mass ratios below 1 and particle sizes around 10 nm, at which homogenous distributions of silica within the carbon black structure were achieved. The results emphasise the general applicability of hetero-aggregation via spray flames with possible applications as battery materials.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3