Challenges in Recycling Spent Lithium‐Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal

Author:

Wang Mengmeng12ORCID,Liu Kang12ORCID,Yu Jiadong3,Zhang Qiaozhi12,Zhang Yuying12,Valix Marjorie4,Tsang Daniel C.W.12ORCID

Affiliation:

1. Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China

2. Research Centre for Environmental Technology and Management The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China

3. State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China

4. School of Chemical and Biomolecular Engineering University of Sydney Darlington NSW 2008 Australia

Abstract

AbstractIn the recycling of retired lithium‐ion batteries (LIBs), the cathode materials containing valuable metals should be first separated from the current collector aluminum foil to decrease the difficulty and complexity in the subsequent metal extraction. However, strong the binding force of organic binder polyvinylidene fluoride (PVDF) prevents effective separation of cathode materials and Al foil, thus affecting metal recycling. This paper reviews the composition, property, function, and binding mechanism of PVDF, and elaborates on the separation technologies of cathode material and Al foil (e.g., physical separation, solid‐phase thermochemistry, solution chemistry, and solvent chemistry) as well as the corresponding reaction behavior and transformation mechanisms of PVDF. Due to the characteristic variation of the reaction systems, the dissolution, swelling, melting, and degradation processes and mechanisms of PVDF exhibit considerable differences, posing new challenges to efficient recycling of spent LIBs worldwide. It is critical to separate cathode materials and Al foil and recycle PVDF to reduce environmental risks from the recovery of retired LIBs resources. Developing fluorine‐free alternative materials and solid‐state electrolytes is a potential way to mitigate PVDF pollution in the recycling of spent LIBs in the EV era.

Publisher

Wiley

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3