Thickness Optimization of Charge Transport Layers on Perovskite Solar Cells for Aerospace Applications

Author:

Lee Doowon1ORCID,Kim Kyeong Heon2,Kim Hee-Dong1

Affiliation:

1. Department of Semiconductor Systems Engineering, and Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

2. Department of Convergence Electronic Engineering, Gyeongsang National University, Jinju-si 52725, Republic of Korea

Abstract

In aerospace applications, SiOx deposition on perovskite solar cells makes them more stable. However, the reflectance of the light changes and the current density decreases can lower the efficiency of the solar cell. The thickness of the perovskite material, ETL, and HTL must be re-optimized, and testing the number of cases experimentally takes a long time and costs a lot of money. In this paper, an OPAL2 simulation was used to find the thickness and material of ETL and HTL that reduces the amount of light reflected by the perovskite material in a perovskite solar cell with a silicon oxide film. In our simulations, we used an air/SiO2/AZO/transport layer/perovskite structure to find the ratio of incident light to the current density generated by the perovskite material and the thickness of the transport layer to maximize the current density. The results showed that when 7 nm of ZnS material was used for CH3NH3PbI3-nanocrystalline perovskite material, a high ratio of 95.3% was achieved. In the case of CsFAPbIBr with a band gap of 1.70 eV, a high ratio of 94.89% was shown when ZnS was used.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3