Physics-Informed Neural Networks-Based Salinity Modeling in the Sacramento–San Joaquin Delta of California

Author:

Roh Dong Min1ORCID,He Minxue2ORCID,Bai Zhaojun3,Sandhu Prabhjot2,Chung Francis2,Ding Zhi4,Qi Siyu4ORCID,Zhou Yu2,Hoang Raymond2,Namadi Peyman2,Tom Bradley2,Anderson Jamie2

Affiliation:

1. Department of Mathematics, University of California, Davis, CA 95616, USA

2. California Department of Water Resources, 1516 9th Street, Sacramento, CA 95814, USA

3. Department of Computer Science, University of California, Davis, CA 95616, USA

4. Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA

Abstract

Salinity in estuarine environments has been traditionally simulated using process-based models. More recently, data-driven models including artificial neural networks (ANNs) have been developed for simulating salinity. Compared to process-based models, ANNs yield faster salinity simulations with comparable accuracy. However, ANNs are often purely data-driven and not constrained by physical laws, making it difficult to interpret the causality between input and output data. Physics-informed neural networks (PINNs) are emerging machine-learning models to integrate the benefits of both process-based models and data-driven ANNs. PINNs can embed the knowledge of physical laws in terms of the partial differential equations (PDE) that govern the dynamics of salinity transport into the training of the neural networks. This study explores the application of PINNs in salinity modeling by incorporating the one-dimensional advection–dispersion salinity transport equation into the neural networks. Two PINN models are explored in this study, namely PINNs and FoNets. PINNs are multilayer perceptrons (MLPs) that incorporate the advection–dispersion equation, while FoNets are an extension of PINNs with an additional encoding layer. The exploration is exemplified at four study locations in the Sacramento–San Joaquin Delta of California: Pittsburg, Chipps Island, Port Chicago, and Martinez. Both PINN models and benchmark ANNs are trained and tested using simulated daily salinity from 1991 to 2015 at study locations. Results indicate that PINNs and FoNets outperform the benchmark ANNs in simulating salinity at the study locations. Specifically, PINNs and FoNets have lower absolute biases and higher correlation coefficients and Nash–Sutcliffe efficiency values than ANNs. In addition, PINN models overcome some limitations of purely data-driven ANNs (e.g., neuron saturation) and generate more realistic salinity simulations. Overall, this study demonstrates the potential of PINNs to supplement existing process-based and ANN models in providing accurate and timely salinity estimation.

Funder

California Department of Water Resources

University of California

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3