Salinity Modeling Using Deep Learning with Data Augmentation and Transfer Learning

Author:

Qi Siyu1ORCID,He Minxue2ORCID,Hoang Raymond2,Zhou Yu2,Namadi Peyman2,Tom Bradley2,Sandhu Prabhjot2,Bai Zhaojun3,Chung Francis2,Ding Zhi1,Anderson Jamie2,Roh Dong Min4ORCID,Huynh Vincent1

Affiliation:

1. Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA

2. California Department of Water Resources, 1516 9th Street, Sacramento, CA 95814, USA

3. Department of Computer Science, University of California, Davis, CA 95616, USA

4. Department of Mathematics, University of California, Davis, CA 95616, USA

Abstract

Salinity management in estuarine systems is crucial for developing effective water-management strategies to maintain compliance and understand the impact of salt intrusion on water quality and availability. Understanding the temporal and spatial variations of salinity is a keystone of salinity-management practices. Process-based numerical models have been traditionally used to estimate the variations in salinity in estuarine environments. Advances in data-driven models (e.g., deep learning models) make them effective and efficient alternatives to process-based models. However, a discernible research gap exists in applying these advanced techniques to salinity modeling. The current study seeks to address this gap by exploring the innovative use of deep learning with data augmentation and transfer learning in salinity modeling, exemplified at 23 key salinity locations in the Sacramento–San Joaquin Delta which is the hub of the water-supply system of California. Historical, simulated (via a hydrodynamics and water quality model), and perturbed (to create a range of hydroclimatic and operational scenarios for data-augmentation purposes) flow, and salinity data are used to train a baseline multi-layer perceptron (MLP) and a deep learning Residual Long-Short-Term Memory (Res-LSTM) network. Four other deep learning models including LSTM, Residual Network (ResNet), Gated Recurrent Unit (GRU), and Residual GRU (Res-GRU) are also examined. Results indicate that models pre-trained using augmented data demonstrate improved performance over models trained from scratch using only historical data (e.g., median Nash–Sutcliffe efficiency increased from around 0.5 to above 0.9). Moreover, the five deep learning models further boost the salinity estimation performance in comparison with the baseline MLP model, though the performance of the latter is acceptable. The models trained using augmented data are then (a) used to develop a web-based Salinity Dashboard (Dashboard) tool that allows the users (including those with no machine learning background) to quickly screen multiple management scenarios by altering inputs and visualizing the resulting salinity simulations interactively, and (b) transferred and adapted to estimate observed salinity. The study shows that transfer learning results more accurately replicate the observations compared to their counterparts from models trained from scratch without knowledge learned and transferred from augmented data (e.g., median Nash–Sutcliffe efficiency increased from around 0.4 to above 0.9). Overall, the study illustrates that deep learning models, particularly when pre-trained using augmented data, are promising supplements to existing process-based models in estuarine salinity modeling, while the Dashboard enables user engagement with those pre-trained models to inform decision-making efficiently and effectively.

Funder

California Department of Water Resources

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3