Residuals of Tropospheric Delays from GNSS Data and Ray-Tracing as a Potential Indicator of Rain and Clouds

Author:

Hordyniec Paweł,Kapłon Jan,Rohm Witold,Kryza MaciejORCID

Abstract

The Global Navigation Satellite System (GNSS) is commonly recognized by its all-weather capability. However, observations depend on atmospheric conditions which requires the induced tropospheric delay to be estimated as an unknown parameter. In the following study, we investigate the impact of intense weather events on GNSS estimates. GNSS slant total delays (STD) in Precise Point Positioning technique (PPP) strategy were calculated for stations in southwest Poland in a 56 days period covering several heavy precipitation cases. The corresponding delays retrieved from Weather Research and Forecasting (WRF) model by a ray-tracing technique considered only gaseous parts of the atmosphere. The discrepancies are correlated with rain rates and cloud type products from remote sensing platforms. Positive correlation is found as well as GNSS estimates tend to be systematically larger than modeled delays. Mean differences mapped to the zenith direction are showed to vary between 10 mm and 30 mm. The magnitude of discrepancies follows the intensity of phenomena, especially for severe weather events. Results suggest that effects induced by commonly neglected liquid and solid water terms in the troposphere modeling should be considered in precise GNSS applications for the atmosphere monitoring. The state-of-art functional model applied in GNSS processing strategies shows certain deficits. Estimated tropospheric delays with gradients and post-fit residuals could be replaced by a loosely constrained solution without loss of quality.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3