The CASA Nowcasting System

Author:

Ruzanski Evan1,Chandrasekar V.1,Wang Yanting1

Affiliation:

1. Colorado State University, Fort Collins, Colorado

Abstract

Abstract Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful and the Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution (0.5-km spatial and 1-min temporal resolution) reflectivity data that are amenable to producing valuable nowcasts. This paper describes the theory and implementation of a nowcasting system operating in the CASA Distributed Collaborative Adaptive Sensing network and shows that nowcasting can be reliably performed in such a distributed environment. In this context, nowcasting is used in a traditional sense to produce predictions of radar reflectivity fields up to 10 min into the future to support emergency manager decision making, and in a novel manner to support researchers and operational forecasters where 1–5-min nowcasts are used to steer the radar nodes to better observe moving precipitation systems. The high-resolution nature of CASA data and distributed system architecture necessitate the use of a fast nowcasting algorithm. A method is described that uses linear least squares estimation implemented in the Fourier domain for motion estimation with advection performed via a kernel-based method formulated in the spatial domain. Results of a performance evaluation during the CASA 2009 Integrative Project 1 experiment are presented that show that the nowcasting system significantly outperformed persistence forecasts of radar reflectivity in terms of critical success index and mean absolute error for lead times up to 10 min. Feedback from end users regarding the use of nowcasting for adaptive scanning was also unanimously positive.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference62 articles.

1. Partial Differential Equations with Fourier Series and Boundary Value Problems;Asmar,2004

2. Development of a precipitation nowcasting algorithm based on optical flow techniques;Bowler;J. Hydrol.,2004

3. CASA’s first test bed: Integrative Project 1;Brotzge,2005

4. Local weather forecasting;Browning;Proc. Roy. Soc. London,1980

5. Nowcasting;Browning,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3