Smart Pothole Detection Using Deep Learning Based on Dilated Convolution

Author:

Ahmed Khaled R.ORCID

Abstract

Roads make a huge contribution to the economy and act as a platform for transportation. Potholes in roads are one of the major concerns in transportation infrastructure. A lot of research has proposed using computer vision techniques to automate pothole detection that include a wide range of image processing and object detection algorithms. There is a need to automate the pothole detection process with adequate accuracy and speed and implement the process easily and with low setup cost. In this paper, we have developed efficient deep learning convolution neural networks (CNNs) to detect potholes in real-time with adequate accuracy. To reduce the computational cost and improve the training results, this paper proposes a modified VGG16 (MVGG16) network by removing some convolution layers and using different dilation rates. Moreover, this paper uses the MVGG16 as a backbone network for the Faster R-CNN. In addition, this work compares the performance of YOLOv5 (Large (Yl), Medium (Ym), and Small (Ys)) models with ResNet101 backbone and Faster R-CNN with ResNet50(FPN), VGG16, MobileNetV2, InceptionV3, and MVGG16 backbones. The experimental results show that the Ys model is more applicable for real-time pothole detection because of its speed. In addition, using the MVGG16 network as the backbone of the Faster R-CNN provides better mean precision and shorter inference time than using VGG16, InceptionV3, or MobilNetV2 backbones. The proposed MVGG16 succeeds in balancing the pothole detection accuracy and speed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference87 articles.

1. Analysis of existing road surface on the basis of pothole characteristics;Solanke;Glob. J. Res. Eng.,2019

2. Pothole Damage Costs Drivers $3 Billion Annually Nationwidehttp://news.aaa-calif.com/news/pothole-damage-costs-drivers-3-billion-annually-nationwide

3. Supreme Court Takes Note of 3597 Deaths Due to Pothole-Related Accidents in 2017https://economictimes.indiatimes.com/news/politics-and-nation/supreme-court-takes-note-of-3597-deaths-due-to-pothole-related-accidents-in-2017/articleshow/65858401.cms

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3