An optimized deep belief network based pothole detection model for asphalt road

Author:

Misra Mohit1,Sharma Rohit2,Tiwari Shailesh3

Affiliation:

1. Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, NCR Campus, Delhi Meerut Road, Modingar, UP, India

2. Department of Electronics and Communication Engineering, ABES Engineering College, Ghaziabad, UP, India

3. Adnl Director, KIET, Ghaziabad, UP, India

Abstract

The poor quality of asphalt roads has a significant impact on driver safety, damages the mechanical structure of vehicles, increases fuel consumption, annoys passengers and is sometimes also responsible for accidents. Further, the poor quality of the road can be described as a rough surface and the presence of potholes. The potholes can be one of the main reasons for accident cause, increased fuel consumption and annoying passengers. Furthermore, the potholes can be of varied size, radiance effect, shadow and scales. Hence, the detection of potholes in asphalt roads can be considered a complex task and one of the serious issues regarding the maintenance of asphalt roads. This work focuses on the detection of the potholes in the asphalt roads. So in this work, a pothole detection model is proposed for accurate detection of potholes in the asphalt roads. The effectiveness of the proposed pothole detection model is tested over a set of real-world image datasets. In this study, the asphalt roads of the Delhi-NCR region are chosen and real-world images of these roads are collected through the smart camera. The final road image dataset consists of a total of 1150 images including 860 pothole images and the rest of are without pothole images. Further, the deep belief network is integrated into a proposed model for the detection of pothole images as a classification task and classified the images as pothole detected and not pothole. The experimental results of the proposed detection model are evaluated using accuracy, precision, recall, F1-Score and AUC parameters. These results are also compared with ANN, SVM, VGG16, VGG19 and InceptionV3 techniques. The simulation results showed that the proposed detection model achieves a 93.04% accuracy rate, 94.30% recall rate, 96.31% precision rate and 96.92% F1-Score rate than other techniques.

Publisher

IOS Press

Reference45 articles.

1. Imagenet large scale visual recognition challenge;Russakovsky;International Journal of Computer Vision.,2015

2. Evaluation of road traffic accidents (rtas) on hyderabad karachi m-9 motorway section;Detho;Engineering, Technology & Applied Science Research.,2018

3. The good, the bad and the ugly of South African fatal road accidents;Verster;South African Journal of Science.,2018

4. Review and analysis of pothole detection methods;Kim;Journal of Emerging Trends in Computing and Information Sciences.,2014

5. On-board road condition monitoring system using slip-based tyre-road friction estimation and wheel speed signal analysis;Li;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3