Deep Learning Based Air-Writing Recognition with the Choice of Proper Interpolation Technique

Author:

Abir Fuad AlORCID,Siam Md. AlORCID,Sayeed Abu,Hasan Md. Al MehediORCID,Shin JungpilORCID

Abstract

The act of writing letters or words in free space with body movements is known as air-writing. Air-writing recognition is a special case of gesture recognition in which gestures correspond to characters and digits written in the air. Air-writing, unlike general gestures, does not require the memorization of predefined special gesture patterns. Rather, it is sensitive to the subject and language of interest. Traditional air-writing requires an extra device containing sensor(s), while the wide adoption of smart-bands eliminates the requirement of the extra device. Therefore, air-writing recognition systems are becoming more flexible day by day. However, the variability of signal duration is a key problem in developing an air-writing recognition model. Inconsistent signal duration is obvious due to the nature of the writing and data-recording process. To make the signals consistent in length, researchers attempted various strategies including padding and truncating, but these procedures result in significant data loss. Interpolation is a statistical technique that can be employed for time-series signals to ensure minimum data loss. In this paper, we extensively investigated different interpolation techniques on seven publicly available air-writing datasets and developed a method to recognize air-written characters using a 2D-CNN model. In both user-dependent and user-independent principles, our method outperformed all the state-of-the-art methods by a clear margin for all datasets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3