PortLaneNet: A Scene-Aware Model for Robust Lane Detection in Container Terminal Environments

Author:

Ye Haixiong1,Kang Zhichao1,Zhou Yue1,Zhang Chenhe2,Wang Wei1,Zhang Xiliang3ORCID

Affiliation:

1. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

2. Shanghai East Container Terminal Co., Ltd., Shanghai 200137, China

3. School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China

Abstract

In this paper, we introduce PortLaneNet, an optimized lane detection model specifically designed for the unique challenges of enclosed container terminal environments. Unlike conventional lane detection scenarios, this model addresses complexities such as intricate ground markings, tire crane lane lines, and various types of regional lines that significantly complicate detection tasks. Our approach includes the novel Scene Prior Perception Module, which leverages pre-training to provide essential prior information for more accurate lane detection. This module capitalizes on the enclosed nature of container terminals, where images from similar area scenes offer effective prior knowledge to enhance detection accuracy. Additionally, our model significantly improves understanding by integrating both high- and low-level image features through attention mechanisms, focusing on the critical components of lane detection. Through rigorous experimentation, PortLaneNet has demonstrated superior performance in port environments, outperforming traditional lane detection methods. The results confirm the effectiveness and superiority of our model in addressing the complex challenges of lane detection in such specific settings. Our work provides a valuable reference for solving lane detection issues in specialized environments and proposes new ideas and directions for future research.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3