Segmentation of Microscope Erythrocyte Images by CNN-Enhanced Algorithms

Author:

Buczkowski MateuszORCID,Szymkowski PiotrORCID,Saeed KhalidORCID

Abstract

This paper presents an algorithm for segmentation and shape analysis of erythrocyte images collected using an optical microscope. The main objective of the proposed approach is to compute statistical object values such as the number of erythrocytes in the image, their size, and width to height ratio. A median filter, a mean filter and a bilateral filter were used for initial noise reduction. Background subtraction using a rolling ball filter removes background irregularities. Combining the distance transform with the Otsu and watershed segmentation methods allows for initial image segmentation. Further processing steps, including morphological transforms and the previously mentioned segmentation methods, were applied to each segmented cell, resulting in an accurate segmentation. Finally, the noise standard deviation, sensitivity, specificity, precision, negative predictive value, accuracy and the number of detected objects are calculated. The presented approach shows that the second stage of the two-stage segmentation algorithm applied to individual cells segmented in the first stage allows increasing the precision from 0.857 to 0.968 for the artificial image example tested in this paper. The next step of the algorithm is to categorize segmented erythrocytes to identify poorly segmented and abnormal ones, thus automating this process, previously often done manually by specialists. The presented segmentation technique is also applicable as a probability map processor in the deep learning pipeline. The presented two-stage processing introduces a promising fusion model presented by the authors for the first time.

Funder

Resources for Research by the Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3