Classification of Japanese Handwritten Characters Using Biometrics Approach

Author:

Szymkowski Piotr1ORCID,Saeed Khalid12ORCID,Szymkowski Łukasz1,Nishiuchi Nobuyuki3

Affiliation:

1. Faculty of Computer Science Bialystok, University of Technology, ul. Wiejska 45 A, 15-351 Bialystok, Poland

2. Department of Electronics and Computation Sciences, Universidad de la Costa, Barranquilla 080002, Colombia

3. Faculty of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino 191-0065, Japan

Abstract

The following paper presents a solution to the problem of offline recognition of Japanese characters. Minutiae and other features extractable from handwriting images have been used to recognize individual characters. The solution presented by the authors uses minutiae to recognise single Japanese characters. Due to the complexity of this typeface, the solution presented can be used to recognise archaic characters, from old documents or also works of art. Neural Networks and hybrid classifiers based on five basic types of classifiers, i.e., k-nearest neighbour method, decision trees, support vector machine, logistic regression and Gaussian Naive Bayes classifier have been developed for classification. The study was conducted on Hiragana, Katakana and Kanji characters (ETL9G Database). The accuracy value obtained was 99.934%. The authors present what is probably the first algorithm using minutiae to recognize Japanese handwriting.

Funder

Ministry of Education and Science in Poland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3