Fast Underwater Optical Beacon Finding and High Accuracy Visual Ranging Method Based on Deep Learning

Author:

Zhang BoORCID,Zhong PingORCID,Yang Fu,Zhou Tianhua,Shen Lingfei

Abstract

Visual recognition and localization of underwater optical beacons is an important step in autonomous underwater vehicle (AUV) docking. The main issues that restrict the use of underwater monocular vision range are the attenuation of light in water, the mirror image between the water surface and the light source, and the small size of the optical beacon. In this study, a fast monocular camera localization method for small 4-light beacons is proposed. A YOLO V5 (You Only Look Once) model with coordinated attention (CA) mechanisms is constructed. Compared with the original model and the model with convolutional block attention mechanisms (CBAM), and our model improves the prediction accuracy to 96.1% and the recall to 95.1%. A sub-pixel light source centroid localization method combining super-resolution generative adversarial networks (SRGAN) image enhancement and Zernike moments is proposed. The detection range of small optical beacons is increased from 7 m to 10 m. In the laboratory self-made pool and anechoic pool experiments, the average relative distance error of our method is 1.04 percent, and the average detection speed is 0.088 s (11.36 FPS). This study offers a solution for the long-distance fast and accurate positioning of underwater small optical beacons due to their fast recognition, accurate ranging, and wide detection range characteristics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of underwater visual navigation and docking: advances and challenges;Sixth Conference on Frontiers in Optical Imaging and Technology: Imaging Detection and Target Recognition;2024-04-30

2. Terminal Homing Work for Auv Based on New Structured Cnn and Homing Strategy;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3