Abstract
Recently, global healthcare has made great progress with the use of Internet of Things technology. However, for there to be excellent patient care, there must be a high degree of safety for the IoT health system. There has been a massive increase in hacking systems and the theft of sensitive and highly confidential information from large health centers and hospitals. That is why establishing a highly secure and reliable healthcare system has become a top priority. In this paper, a security scheme for the IoT-enabled healthcare environment, LBSS, is proposed. This security scheme comprises three security mechanisms. The first mechanism is based on the blockchain technology and is used for transaction integrity. The second mechanism is used to store the healthcare system data in a secure manner through the distribution of its data records among multiple servers. The third mechanism is used to access the healthcare data after applying a proposed authorization test. To minimize the security overhead, the healthcare data is prioritized in regard to its importance. Therefore, each security mechanism has specific steps for each level of data importance. Finally, the NS3 package is used to construct a simulation environment for IoT-enabled healthcare systems to measure the proposed security scheme performance. The simulation results proved that the proposed healthcare security scheme outperformed the traditional models in regard to the performance metrics.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献