Abstract
The surface quality of aluminum ingot is crucial for subsequent products, so it is necessary to adaptively detect different types of defects in milled aluminum ingots surfaces. In order to quickly apply the calculations to a real production line, a novel two-stage detection approach is proposed. Firstly, we proposed a novel mask gradient response-based threshold segmentation (MGRTS) in which the mask gradient response is the gradient map after the strong gradient has been eliminated by the binary mask, so that the various defects can be effectively extracted from the mask gradient response map by iterative threshold segmentation. In the region of interest (ROI) extraction, we combine the MGRTS and the Difference of Gaussian (DoG) to effectively improve the detection rate. In the aspect of the defect classification, we train the inception-v3 network with a data augmentation technology and the focal loss in order to overcome the class imbalance problem and improve the classification accuracy. The comparative study shows that the proposed method is efficient and robust for detecting various defects on an aluminum ingot surface with complex milling grain. In addition, it has been applied to the actual production line of an aluminum ingot milling machine, which satisfies the requirement of accuracy and real time very well.
Funder
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献