Localisation of Unmanned Underwater Vehicles (UUVs) in Complex and Confined Environments: A Review

Author:

Watson SimonORCID,Duecker Daniel A.ORCID,Groves KeirORCID

Abstract

The inspection of aquatic environments is a challenging activity, which is made more difficult if the environment is complex or confined, such as those that are found in nuclear storage facilities and accident sites, marinas and boatyards, liquid storage tanks, or flooded tunnels and sewers. Human inspections of these environments are often dangerous or infeasible, so remote inspection using unmanned underwater vehicles (UUVs) is used. Due to access restrictions and environmental limitations, such as low illumination levels, turbidity, and a lack of salient features, traditional localisation systems that have been developed for use in large bodies of water cannot be used. This means that UUV capabilities are severely restricted to manually controlled low-quality visual inspections, generating non-geospatially located data. The localisation of UUVs in these environments would enable the autonomous behaviour and the development of accurate maps. This article presents a review of the state-of-the-art in localisation technologies for these environments and identifies areas of future research to overcome the challenges posed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3