Abstract
This paper presents pulse multiplication technology based on an optimal Pulse Doubling Technique (PDT) to upgrade a 28-Pulse Rectifier (28-PR) to a 56-PR. The optimal PDT comprises a Tapped Interphase Reactor (TIPR) with a low kVA-rating and two diodes. The number of pulses can be increased from 28 to 56 using the PDT so that the input current harmonics are reasonably mitigated. Additionally, the 14-phase Polygon-Connected Autotransformer (PCA) is designed in such a way that it can be used for retrofit applications. A detailed simulation analysis in the MATLAB/Simulink environment is carried out, and the results show that the improved quality indices of the final AC input and DC output power are equivalent to the IEEE 519-2014 standard and meet sensitive industrial application requirements with an input current Total Harmonic Distortion (THD) lower than 3%. Moreover, the power factor also maintained unity for a wide operating range. The optimal PDT scheme is affordable and easy to implement as only a small-capacity PDT (only 1% of the output power) is needed to double the pulse number. An experimental prototype is developed to verify the simulation results.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献