Optimum Design of an 18-Pulse Phase Shifting Autotransformer Rectifier to Improve the Power Quality of Cascaded H-Bridge Motor Driver

Author:

Alahmad Adil,Kacar Firat,Uzunogl Cengiz Polat

Abstract

Due to its simplicity, efficiency, and dependability, the multipulse rectifier is widely used in electrical systems. In the presented work, an optimum design of an 18-pulse rectifier is achieved by comparing the most used configurations on the market. The 18-phase shifting autotransformer (18-PSAT) rectifier is a cheaper alternative to conventional rectifiers to reduce system harmonics. After a thorough study of the market needs and available use, this paper discusses four different structures that provide harmonic levels according to IEEE 519 limitations. An innovative 18-PSAT is shown, studied, simulated, produced, and tested with low power loss rates. The Delta differential configuration primarily emphasises lowering the loss power rating for improved power quality. With its simple structure, easy assembly, and direct connection to diodes, the proposed Delta differential configuration provides higher power quality and can cancel harmonics. To determine which 18-PSAT rectifier unit has the best weight, size, and power quality, a comparison of the selected topologies is made. A comprehensive comparison of each topology has simulation results showing current, voltage, and total harmonic distortion (THD) using MATLAB Simulink. The simulation results show that the total harmonic distortion is under 2.9 % when adopting the suggested Delta differential configuration topology. Compared to other designs, the suggested 18-pulse layout reduces overall cost and footprint by a large margin. It is also demonstrated that the DC load power is about 85 % of the recommended rectifier rating.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3