Automatic Registration of Optical Images with Airborne LiDAR Point Cloud in Urban Scenes Based on Line-Point Similarity Invariant and Extended Collinearity Equations

Author:

Peng Shubiao,Zhang Liang

Abstract

This paper proposes a novel method to achieve the automatic registration of optical images and Light Detection and Ranging (LiDAR) points in urban areas. The whole procedure, which adopts a coarse-to-precise registration strategy, can be summarized as follows: Coarse registration is performed through a conventional point-feature-based method. The points needed can be extracted from both datasets through a matured point extractor, such as the Forster operator, followed by the extraction of straight lines. Considering that lines are mainly from building roof edges in urban scenes, and being aware of their inaccuracy when extracted from an irregularly spaced point cloud, an "infinitesimal feature analysis method" fully utilizing LiDAR scanning characteristics is proposed to refine edge lines. Points which are matched between the image and LiDAR data are then applied as guidance to search for matched lines via the line-point similarity invariant. Finally, a transformation function based on extended collinearity equations is applied to achieve precise registration. The experimental results show that the proposed method outperforms the conventional ones in terms of the registration accuracy and automation level.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Registration of Mobile LiDAR Data and Multi-lens Combined Images using Image Initial Poses;2023 4th International Conference on Computer, Big Data and Artificial Intelligence (ICCBD+AI);2023-12-15

2. HYBRID ADJUSTMENT OF UAS-BASED LiDAR AND IMAGE DATA;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

3. UAV-Based Image and LiDAR Fusion for Pavement Crack Segmentation;Sensors;2023-11-21

4. Automatic Registration of Panoramic Image and Point Cloud Based on the Shape of the Overall Ground Object;IEEE Access;2023

5. Automatic registration of point cloud and panoramic images in urban scenes based on pole matching;International Journal of Applied Earth Observation and Geoinformation;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3