Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer

Author:

Montoya Oscar DaniloORCID,Grisales-Noreña Luis FernandoORCID,Giral-Ramírez Diego ArmandoORCID

Abstract

The problem of the optimal placement and sizing of renewable generation sources based on photovoltaic (PV) technology in electrical distribution grids operated in medium-voltage levels was studied in this research. This optimization problem is from the mixed-integer nonlinear programming (MINLP) model family. Solving this model was achieved by implementing a master–slave optimization approach, where the master–slave corresponded to the application of the modified gradient-based metaheuristic optimizer (MGbMO) and the slave stage corresponded to the application of the successive approximation power flow method. In the master stage, the problem of the optimal placement and sizing of the PV sources was solved using a discrete–continuous codification, while the slave stage was used to calculate the objective function value regarding the energy purchasing costs in terminals of the substation, as well as to verify that the voltage profiles and the power generations were within their allowed bounds. The numerical results of the proposed MGbMO in the IEEE 34-bus system demonstrated its efficiency when compared with different metaheuristic optimizers such as the Chu and Beasley genetic algorithm, the Newton metaheuristic algorithm, the original gradient-based metaheuristic optimizer, and the exact solution of the MINLP model using the general algebraic modeling system. In addition, the possibility of including meshed distribution topologies was tested with excellent numerical results.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3