Planning of an LVAC Distribution System with Centralized PV and Decentralized PV Integration for a Rural Village

Author:

Eam Dara1,Vai Vannak2ORCID,Chhlonh Chhith1,Eng Samphors1

Affiliation:

1. Energy Technology and Management Unit, Research and Innovation Center, Institute of Technology of Cambodia, Russian Federation Blvd., Phnom Penh P.O. Box 86, Cambodia

2. Department of Electrical and Energy Engineering, Faculty of Electrical Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., Phnom Penh P.O. Box 86, Cambodia

Abstract

Energy demand is continuously increasing, leading to yearly expansions in low-voltage (LV) distribution systems integrated with PVs to deliver electricity to users with techno-economic considerations. This study proposes and compares different topology planning strategies with and without PVs in a rural area of Cambodia over 30 years of planning. Firstly, the optimal radial topology from a distribution transformer to end-users is provided using the shortest path algorithm. Secondly, two different phase balancing concepts (i.e., pole balancing and load balancing) with different phase connection methods (i.e., power losses and energy losses) are proposed and compared to find the optimal topology. Then, the integration of centralized (CePV) and decentralized PV (DePV) into the optimal topology is investigated for three different scenarios, which are zero-injection (MV and LV levels), no sell-back price, and a sell-back price. Next, the minimum sell-back price from CePV and DePV integration is determined. To optimize phase balancing, including the location and size of PV, an optimization technique using a water cycle algorithm (WCA) is applied. Finally, an economic analysis of each scenario based on the highest net present cost (NPC), including capital expenditure (CAPEX) and operational expenditure (OPEX) over the planning period, is evaluated. In addition, technical indicators, such as autonomous time and energy, and environmental indicator, which is quantified by CO2 emissions, are taken into account. Simulation results validate the effectiveness of the proposed method.

Funder

Cambodia Higher Education Improvement Project

Institute of Technology of Cambodia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3