Neural Network Approaches to Reconstruct Phytoplankton Time-Series in the Global Ocean

Author:

Martinez ElodieORCID,Brini Anouar,Gorgues Thomas,Drumetz LucasORCID,Roussillon Joana,Tandeo Pierre,Maze Guillaume,Fablet Ronan

Abstract

Phytoplankton plays a key role in the carbon cycle and supports the oceanic food web. While its seasonal and interannual cycles are rather well characterized owing to the modern satellite ocean color era, its longer time variability remains largely unknown due to the short time-period covered by observations on a global scale. With the aim of reconstructing this longer-term phytoplankton variability, a support vector regression (SVR) approach was recently considered to derive surface Chlorophyll-a concentration (Chl, a proxy of phytoplankton biomass) from physical oceanic model outputs and atmospheric reanalysis. However, those early efforts relied on one particular algorithm, putting aside the question of whether different algorithms may have specific behaviors. Here, we show that this approach can also be applied on satellite observations and can even be further improved by testing performances of different machine learning algorithms, the SVR and a neural network with dense layers (a multi-layer perceptron, MLP). The MLP outperforms the SVR to capture satellite Chl (correlation of 0.6 vs. 0.17 on a global scale, respectively) along with its seasonal and interannual variability, despite an underestimated amplitude. Among deep learning algorithms, neural network such as MLP models appear to be promising tools to investigate phytoplankton long-term time-series.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3