Analysis of the Possibilities of Using Different Resolution Digital Elevation Models in the Study of Microrelief on the Example of Terrain Passability

Author:

Dawid WojciechORCID,Pokonieczny KrzysztofORCID

Abstract

In this article, we discuss issues concerning the development of detailed passability maps, which are used in the crisis management process and for military purposes. The paper presents the authorial methodology of the automatic generation of these maps with the use of high-resolution digital elevation models (DEMs) acquired from airborne laser scanning (light detection and ranging (LIDAR)) and photogrammetric data obtained from unmanned aerial vehicle (UAV) measurements. The aim of the article is to conduct a detailed comparison of these models in the context of their usage in passability map development. The proposed algorithm of map generation was tested comprehensively in terms of the source of the used spatial data, the resolution, and the types of vehicles moving in terrain. Tests were conducted on areas with a diversified landform, with typical forms of relief that hinder vehicle movement (bluffs and streams). Due to the huge amount of data to be processed, the comprehensive analysis of the possibilities of using DEMs in different configurations of pixel size was executed. This allowed for decreasing the resolution of the model while maintaining the appropriate accuracy properties of the resulting passability map. The obtained results showed insignificant disparities between both sources of used DEMs and demonstrated that using the model with the 2.5 m pixel size did not significantly degrade the accuracy of the passability maps, which has a huge impact on their generation time.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3