Optic Disc Preprocessing for Reliable Glaucoma Detection in Small Datasets

Author:

Valdez-Rodríguez José E.ORCID,Felipe-Riverón Edgardo M.ORCID,Calvo HiramORCID

Abstract

Glaucoma detection is an important task, as this disease can affect the optic nerve, and this could lead to blindness. This can be prevented with early diagnosis, periodic controls, and treatment so that it can be stopped and prevent visual loss. Usually, the detection of glaucoma is carried out through various examinations such as tonometry, gonioscopy, pachymetry, etc. In this work, we carry out this detection by using images obtained through retinal cameras, in which we can observe the state of the optic nerve. This work addresses an accurate diagnostic methodology based on Convolutional Neural Networks (CNNs) to classify these optical images. Most works require a large number of images to train their CNN architectures, and most of them use the whole image to perform the classification. We will use a small dataset containing 366 examples to train the proposed CNN architecture and we will only focus on the analysis of the optic disc by extracting it from the full image, as this is the element that provides the most information about glaucoma. We experiment with different RGB channels and their combinations from the optic disc, and additionally, we extract depth information. We obtain accuracy values of 0.945, by using the GB and the full RGB combination, and 0.934 for the grayscale transformation. Depth information did not help, as it limited the best accuracy value to 0.934.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Glaucoma Assessment Using Super Pixel Classification;Handbook of Research on Thrust Technologies’ Effect on Image Processing;2023-06-30

2. A Survey of Deep Learning Models to Detect and Classify Eye Disorders;2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS);2023-06-14

3. Vision Transformers Based Classification for Glaucomatous Eye Condition;2022 26th International Conference on Pattern Recognition (ICPR);2022-08-21

4. Convolutional Neural Network Analysis of Fundus for Glaucoma Diagnosis;2022 International Conference on Smart Information Systems and Technologies (SIST);2022-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3